Materi Matriks Kelas 11
Pengertian Matriks, Macam-macam Matriks, Operasi Matriks dan Contoh soalnya
Nama: Dasya Putrinda Haris (08)
Kelas: XI IPS 2
Sebelum memasuki materi matriks, kita perlu mengetahui pengertian matriks.
Contoh mudah matriks dapat digambarkan sebagai berikut:
Macam-Macam Matriks
1. Matriks nol : matriks yang semua elemennya adalah nol.
2. Matriks baris : matriks yang hanya memiliki satu baris.
3. Matriks kolom : matriks yang hanya memiliki satu kolom.
4. Matriks persegi : matriks yang memiliki jumlah baris dan kolom yang sama.
5. Matriks identitas : matriks konstanta dengan elemen diagonal utama adalah 1.
Operasi Dasar Matriks :
1. Penjumlahan dan Pengurangan Matriks
Penjumlahan serta pengurangan dalam matriks hanya dapat dilakukan apabila kedua matriks mempunyai ukuran atau tipe yang sama. Elemen-elemen dalam suatu matriks yang dijumlahkan atau dikurangan yaitu elemen yang memilki posisi/letak yang sama.
representasi dekoratifnya sebagai berikut
2. Perkalian Skalar
Perkalian matriks dilakukan dengan cara tiap baris dikalikan dengan tiap kolom, selanjutnya dijumlahkan pada kolom yang sama
contoh perhitungan :
Ordo suatu matriks merupakan bilangan yang menunjukan banyaknya baris (m) dan banyaknya kolom (n). Sebagai contoh :
merupakan matriks berordo 3×2
Matriks Identitas
Matriks Identitas adalah matriks yang anggota pada diagonal utamanya selalu 1
Matriks Transpose (At)
Matriks transpose merupakan matriks yang mengalami pertukaran elemen dari kolom menjadi baris atau sebaliknya. Contoh :
maka matriks transposenya (At) adalah
Contoh – contoh :
1. Kesamaan Dua Matriks
Tentukan nilai 2x-y+5z!
Jawab:
2.
3. Contoh Perkalian matriks dengan variabel
Determinan Suatu Matriks
Untuk menentukan determinan dari suatu matriks dapat digunakan beberapa cara :
1. Misalnya terdapat matriks
yang berordo 2×2 dalam menentukan determinan dari matrikas A yang biasa ditulis |A| adalah
2. Metode Sarrus
Misalnya terdapat
maka untuk menentukan nilai determinan dari matriks A tersebut
Ubah matriks dalam bentuk seperti diatas selanjutnya perhitungannya dengan cara menambahkan elemen dari kiri atas kekanan bawah (mulai dari a → e → i, b → f → g, dan c → d → h) kemudian dikurangi dengan elemen dari kanan atas kekiri bawah (mulai dari c → e → g, a → f → h, dan b → d → i) maka akan menjadi
Sebagai contohnya
3. Metode Ekspansi Baris dan Kolom
maka untuk menentukan determian dari matriks P
Matriks Singular
Matriks Singular yaitu matriks yang nilai determinannya 0.
Sebagai contoh
Jika A matriks singular, tentukan nilai x!
Jawab:
Invers Matriks
Misalnya diketahui maka invers dari matriks A
Sifat-sifat dari invers suatu matriks :
Persamaan Matriks
Tentukan X matriks dari persamaan:
- Jika diketahui matriks A.X=B
- Jika diketahui matriks X.A=B
Comments
Post a Comment