Soal Transportasi Translasi, Refleksi, Rotasi, Dilatasi dengan perhitungan matriks

 

Soal Transportasi Translasi, Refleksi, Rotasi, Dilatasi dengan perhitungan matriks untuk mencari bayangannya: Titik, garis, bidan datar dan ruangan

Nama: Dasya Putrinda Haris 
Absen: 08
Kelas: XI IPS 2

1. Translasi

1. Jika garis y = x + 5 ditranslasikan oleh (23), maka tentukan persamaan bayangannya.
Pembahasan:
(xy)=(xy)+(23)
Dengan demikian:
x' = x + 2  => x = x' - 2
y' = y + 3  => y = y' - 3
Dengan mensubtitusikan x = x' - 2 dan y = y' - 3 pada persamaan garis, diperoleh:
y' - 3 = (x' - 2) + 5
y' - 3 = x' + 3
y' = x' + 6
Jadi, persamaan bayangan garis y = x + 5 oleh translasi (23) adalah y = x + 6.
2.  Titik A(5,-2) ditranslasi oleh  T (-3, 1). Tentukan koordinat bayangan titik A tersebut!
3.    Tentukan bayangan garis y = 3x – 5 oleh translasi T (-2, 1)!
Pembahasan :

2. Refleksi

1.Persamaan garis 3x – y – 11 = 0 karena refleksi terhadap garis y = x, dilanjutkan oleh transformasi yang bersesuaian dengan matriks A,

  \[ \begin{pmatrix} -3 & 2 \\ -1 & 1 \end{pmatrix} \]

adalah

Matriks pencerminan terhadap garis y = x adalah:

Contoh soal dan pembahasan refleksi

Berdasarkan rumus di atas, dapat diperoleh kesimpulan bahwa x’ = y dan y’ = x. Substitusikan nilai tersebut pada persamaan 3x – y – 11 = 0 sehingga diperoleh persamaan berikut.

3x – y – 11 = 0
3y’ – x’ – 11 = 0
– x’ + 3y’ – 11 = 0

 transformasi yang bersesuaian dengan matriks A,

  \[ \begin{pmatrix} -3 & 2 \\ -1 & 1 \end{pmatrix} \]

Perhatikan langkah – langkahnya seperti berikut,

  \[ \begin{pmatrix} x'' \\ y'' \end{pmatrix} = \begin{pmatrix} -3 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3x' + 2y' \\ -x' + y' \end{pmatrix} \]

Sehingga, diperoleh dua persamaan berikut.

–3x’ + 2y’ = x’’
– x’ + y’ = y’’

Berikutnya, akan dicari persamaan yang senilai dengan x’ dan y’:

Mencari nilai x’:

Metode eliminasi variabel

Mencari nilai y’:

Metode eliminasi variabel

Subtitusi hasil x’ dan y’ di atas pada persamaan  – x’ + 3y’– 11 = 0:

  \[ -x' + 3y' - 11 = 0 \]

  \[ -\left( 2y'' - x'' \right) + 3\left( 3y'' - x'' \right) - 11 = 0 \]

  \[ -2y'' + x'' + 9y'' - 3x'' - 11 = 0 \]

\[ -2x'' + 7y'' - 11 = 0 \]

  \[ 2x'' - 7y'' + 11 = 0 \]

Jadi, hasil akhir transformasi dari persamaan 3x – y – 11 = 0 adalah 2x – 7y + 11 = 0.


2. Tentukan bayangan garis 2x – y = 5 apabila dicerminkan terhadap garis y = -x!

Pembahasan :
(x, y) ó (-y, -x)
x’ = -y , y’ = -x
2(-y’) – (-x’) = 5
x’ – 2y’ – 5 = 0                                   Jadi bayangan x – 2y – 5 = 0


3. Rotasi

1. Tentukan bayangan titik (5, -3) oleh rotasi R(P, 90) dengan koordinat titik P(-1, 2)!

Pembahasan :

2. Tentukan bayangan titik (9, 3) oleh dilatasi [O, 1/3]!
Pembahasan :

4. Dilatasi

1. Tentukan bayangan garis 3x + 4y – 5 = 0 oleh dilatasi dengan pusat (-2, 1) dan faktor skala 2!
Pembahasan :
2. Dilatasi yang berpusat di titik (3, 1) dengan faktor skala 3, memetakan titik (5, b) ke titik (a, 10). Maka nilai a – b adalah ….

Pembahasan:

Dilatasi dengan pusat (3, 1) dengan faktor skala 3 akan menghasilkan matriks transformasi berikut.

  \[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 5 - 3 \\ b- 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}\]

  \[ \begin{pmatrix} a \\ 10 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ b- 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}\]

  \[ \begin{pmatrix} a \\ 10 \end{pmatrix} = \begin{pmatrix} 6 \\ 3b - 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix}\]

  \[ \begin{pmatrix} a \\ 10 \end{pmatrix} = \begin{pmatrix} 9 \\ 3b - 2 \end{pmatrix} \]

Sehingga dapat diperoleh nilai a dan b:

  • a = 9
  • 3b – 2 = 10
    3b = 12
    b = 12 : 3 = 4

Jadi, nilai a – b = 9 – 4 = 5

sumber: 

http://defajhareborn.blogspot.com/2015/06/soal-transformasi-translasi-refleksi.html

https://idschool.net/sma/rumus-pada-transformasi-geometri-translasi-refleksi-rotasi-dan-dilatasi/

Comments